Volume 4, Issue 3, September 2019, Page: 64-73
Effect of Curcumin and Nano-curcumin on Reduce Aluminum Toxicity in Rats
Rehab Mohamed Ibrahim, Department of Special Food and Nutrition, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
Fatma El Zahraa Ali Abd Elaal, Department of Horticulture Crops Processing, Food Technology Research Institute, ARC, Giza, Egypt
Sahar Zaki, Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
Received: Jul. 26, 2019;       Accepted: Aug. 24, 2019;       Published: Oct. 9, 2019
DOI: 10.11648/j.ijfsb.20190403.12      View  53      Downloads  27
Abstract
Aluminum is a ubiquitous toxic metal that mainly affects brain, bone, spleen, liver, kidney, hepatic hematopoietic system. This study investigated the effect of Curcumin and Curcumin Nanoparticles on reduced the toxicity of aluminum chloride in treated rats. Six groups of rats were used: (1) control; (2) curcumin-treated rats (15 mg curcumin /Kg BW; (3) Nano-curcumin -treated rats (15 mg Nano-curcumin /Kg BW); (4) aluminum chloride-treated rats (100 mg/kg BW); (5) AlCl3- curcumin-treated rats (100 mg AlCl3 and 15 mg curcumin/kg BW); (6) AlCl3- Nano-curcumin -treated rats (100 mg AlCl3 and 15 mg Nano-curcumin /kg BW). The treatment with AlCl3 alone caused significant (P≤ 0.05) increased in liver and kidney functions of rats, while the oral intake of curcumin and Nano-curcumin eliminate the harmful effect of AlCl3. On the same side, the treatment with AlCl3 alone significantly (P≤ 0.05) increase the free radical level and decreased the activities of antioxidant enzymes in plasma, while the treatment with curcumin and Nano-curcumin reduced this increased in free radicals and increased the activities of antioxidant enzymes. These results confirmed that the curcumin and Nano-curcumin reduced the toxicity effect of AlCl3 in rats; moreover, Nano-curcumin has a best biological and antioxidant activity than curcumin in healthy and AlCl3-treated rats.
Keywords
Curcumin, Nano-curcumin, Aluminum Toxicity, Nano-Toxicology
To cite this article
Rehab Mohamed Ibrahim, Fatma El Zahraa Ali Abd Elaal, Sahar Zaki, Effect of Curcumin and Nano-curcumin on Reduce Aluminum Toxicity in Rats, International Journal of Food Science and Biotechnology. Vol. 4, No. 3, 2019, pp. 64-73. doi: 10.11648/j.ijfsb.20190403.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., Walters, M. A., 2017. The essential medicinal chemistry of curcumin miniperspective, J. Med. Chem. 60, 1620–1637.
[2]
Shin, S. K., Ha, T. Y., McGregor, R. A., Choi, M. S., 2011. Longterm curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res. 55, 1829-1840.
[3]
Anand, P., Kunnumakkara, A. B., Newman, R. A., Aggarwal, B. B., 2007. Bioavailability ofcurcumin: problems and promises, Mol. Pharm. 4, 807–818.
[4]
Sultana, S., Khan, M. R., Kumar, M., Kumar, S., Ali, M., 2013. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target 21, 107-125.
[5]
Laabbar, W., Elgot, A., Kissani, N., Gamrani, H., 2014. Chronic aluminum intoxication in rat induced both serotonin changes in the dorsal raphe nucleus and alteration of glycoprotein secretion in the subcommissural organ: immunohistochemical study. Neurosci. Lett. 577, 72–76.
[6]
Willhite, C. C., Karyakina, N. A., Yokel, R. A., Yenugadhati, N., Wisniewski, T. M., Arnold, I. M., Momoli, F., Krewski, D., 2014. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminium, aluminium oxides, aluminium hydroxide and its soluble salts. Crit. Rev. Toxicol. 44 (Suppl. 4), 1-80.
[7]
Amjad, S. and Umesalma, S., 2015. Protective effect of Centella asiatica against aluminium-induced neurotoxicity in cerebral cortex, striatum, hypothalamus and hippocampus of rat brain- histopathological, and biochemical approach, J. Mol. Biomark. Diagn. 6: 212. doi: 10.4172/2155-9929.1000212.
[8]
Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, J., Harry, J, et al., 2007. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health, 10 (1), 1–269.
[9]
Mai, S., Qin, H., Hong, W., Hu, X., Luo, Y., Yang, Y., Kuang, S., Tian, X., Ma, J., Yang, J. 2016. Toxicol. Appl. Pharmacol. 305, 259–266.
[10]
Shoenfeld, Y., Agmon-Levin, N., 2011. ‘ASIA’ – autoimmune/inflammatory syndrome induced by adjuvants. J. Autoimmun. 36, 4–8.
[11]
Bondy, S. C., 2016. Low levels of aluminium can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration. Neurotoxicology 52, 222-229.
[12]
Mahieu, S., Contini, M. C., Gonzalez, M., 2000. Aluminum toxicity, heatological effects. Toxicol. Lett. 111, 235–242.
[13]
Chiroma, S. M., Moklas, M. A. M., Taib, C. N. M., Baharuldin, M. T. H., Amon, Z., 2018. D-galactose and aluminium chloride induced rat model with cognitive Impairments. Biomedicine & Pharmacotherapy 103, 1602-1608.
[14]
Childs, A. C., Phaneuf, S. L., Dirks, A. J., Phillips, T., Leeuwenburgh, C., 2002. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Res. 62, 4592-4598.
[15]
Kushwaha, P., Yadav, A., Samim, M. Flora, S. J. S., 2018. Combinatorial drug delivery strategy employing nano-curcumin and nano-MiADMSA for the treatment of arsenic intoxication in mouse. Chemico-Biological Interactions 286, 78-87.
[16]
Tabacco, A., Meiattinim, F., Moda, E., Tarli, P., 1979. Simplified enzymic/colorimetric serum urea nitrogen determination. Clin Chem. 25, 336-337.
[17]
Burtis, C. A., Ashwood, E. R., Bruns, D. E., 1999. Serum total protein determination. In: Tietz textbook of clinical chemistry and molecular diagnostics, 3rd ed. AACC 1915-1916.
[18]
Fabiny, D. L., Ertingshausen, G., 1971. Automated reaction-rate method for determination of serum creatinine with cintrifiChem. Clin Chem. 17, 696-700.
[19]
Reitman, S., Frankel, S., 1957. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology 26, 56-63.
[20]
Belfield, A., Goldberg, D. M., 1971. Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine. Enzyme 12, 561-573.
[21]
Kind, P. R. N., King, E. J., 1954. Estimation of Plasma Phosphatase by Determination of Hydrolysed Phenol with Amino-antipyrine. J. Clin. Path. 7, 322-326.
[22]
Tappel, A. L., Zalkin, H., 1959. Inhibition of lipid peroxidation in mitochondria by vitamin E. Archives of Biochemistry and Biophysics 80, 333–336.
[23]
Misra, H. P., Fridovich, I., 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biolog. Chem. 247, 3170-3175.
[24]
Habig, W. H., Pabst, M. J., Jakoby, W. B., 1974. Glutathione Stransferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 7130–7139.
[25]
Jollow, D. J., Mitchell, J. R., Zampaglione, N., Gillete, J. R., 1974. Bromobenzene- induced liver necrosis, protective role of Glutathione and evidence for 3,4-Bromobenzene oxide in the hepatotoxic metabolite. Pharmacology 11, 151-169.
[26]
SAS, (1986). Statistical Analysis System. SAS User’s Guide: Statistics, version 5 ed. SAS Inst. Inc., Cary, NC, USA.
[27]
Kumar, S., 1998. Biphasic effect of aluminium on cholinergic enzyme of rat brain. Neurosci Lett. 248: 121–123.
[28]
Abubakar, M. G., Taylor, A., Ferns, G. A. A., 2004. Regional accumulation of aluminium in the rat brain is affected by dietary vitamin E. Journal of Trace Elements in Medicine and Biology. 18, 53–59.
[29]
Zhang, L. C., Li, X. W., Gu, Q. Y., Zhu, Y. Z., Zhao, H. S., Li, Y. F., Zhang, Z. G., 2011. Effects of subchronic aluminum exposure on serum concentrations of iron and iron-associated proteins in rats. Biol. Trace Elem. Res. 141, 246–253.
[30]
Priest, N. D., 2004. The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: review and study update. J. Environ. Monit. 6, 375–403.
[31]
You, L. G., Wu, Z. Z., Li, Y. F., Zhang, Y. F., Li, M. X., 2003. The effect of buganyangsui formula on erythrocytes immune and regulation function in mice with Alzheimer's disease following aluminum exposure. Chin. J. Trad. Med. Sci. Technol. 10, 209–210.
[32]
Zhang, Q., Cao, Z., Sun, X., Zuang, C., Huang, W., Li, Y., 2016. Aluminum trichloride induces hypertension and disturbs the function of erythrocyte membrane in male rats. Biol. Trace Elem. Res. 171 (1), 116–123.
[33]
Abdel-Wahhab, M. A., Aljawish, A., El-Nekeety, A. A., Abdel-Aiezm, S. H., Abdel-Kader, H. A. M., Rihn, B. H., Joubert, O., 2015. Chitosan nano particles and quercetinmodulate gene expression and prevent the genotoxicity of aflatoxin B1 in rat liver. Toxicol. Rep. 2, 737-747.
[34]
Ortega-Domínguez, B., Aparicio-Trejo, O. E., García-Arroyo, F. E., León-Contreras, J. C., Tapia, E., Molina-Jijón, E., Hernández-Pando, R., Sánchez-Lozada, L. G., Barrera-Oviedo, D., Pedraza-Chaverri, J., 2017. Curcumin prevents cisplatin-induced renal alterations in mitochondria bioenergetics and dynamic. Food Chem. Toxicol. 107, 373–385.
[35]
Xu, F., Liu, Y., Zhao, H., Yu, K., Song, M., Zhu, Y., Li, Y., 2017. Aluminum chloride caused liver dysfunction and mitochondrial energy metabolism disorder in rat. Journal of Inorganic Biochemistry, 174, 55-62.
[36]
Pratt, D. S., Kaplan, M. M., 2000. Evaluation of abnormal liver-enzyme results in asymptomatic patients. N Engl J Med. 342 (17), 1266–1271.
[37]
Turkez, H., Yousef, M. I., Geyikoglu, F., 2010. Propolis prevents aluminium-induced genetic and hepatic damages in rat liver. Food Chem. Toxicol. 48, 2741–2746.
[38]
Abdel-Wahhab, M. A., Salman, A. S., Ibrahim, M. I. M., El-Kady, A. A., Abdel-Aziem, S. H., Hassan, N. S., Waly. A. I., 2016. Curcumin nanoparticles loaded hydrogels protects against aflatoxin B1-induced genotoxicity in rat liver. Food and Chemical Toxicology 94, 159-171.
[39]
Exley, C., 2004. The pro-oxidant activity of aluminium. Free Radic. Biol. Med. 36, 380-387.
[40]
Ruiperez, F., Mujika, J. I., Ugalde, J. M., Exley, C., Lopez, X., Inorg, J., 2010. Pro-oxidant activity of aluminum: Promoting the Fenton reaction by reducing Fe(III) to Fe(II). Journal of Inorganic Biochemistry, 117, 118–123.
[41]
Mendez-Alvarez, E., Soto-Otero, R., Hermida-Ameijeiras, A., Lopez-Real, A. M., Labandeira-Garcia, J. L., 2002. Biochim. Biophys. Acta 1586, 155–168.
[42]
Bihaqi, S. W., Sharm, M., Singh, A. P., Tiwari, M., 2009. Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. Journal of Ethnopharmacology 124, 409-415.
[43]
Julka, D., Gill, K. D., 1996. Altered calcium homeostasis: a possible mechanism of aluminium induced neurotoxicity. Biochemica Biophysica Acta 135, 47–54.
[44]
Fu, Y., Zheng, S., Lin, J., Ryerse, J., Chen, A., 2008. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation, Mol. Pharmacol 73, 399–409.
[45]
Assis, R., Arcaro, C., Gutierres, V., Oliveira, J., Costa, P., Baviera, A., Brunetti, I., 2017. Combined effects of curcumin and lycopene or bixin in yoghurt on inhibition of LDL oxidation and increases in HDL and paraoxonase levels in streptozotocin-diabetic rats. Int. J. Mol. Sci. 18, 332. https://doi.org/10.3390/ijms18040332.
[46]
Srinivasan, M., Rajendra Prasad, N., Menon, V. P., 2006. Protective effect of curcumin on gamma-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes, Mutat. Res. 611, 96–103.
[47]
Soetikno, V., Sari, F. R., Lakshmanan, A. P., Arumugam, S., Harima, M., Suzuki, K., et al., 2013. Curcumin alleviates oxidative stress, inflammation, and renal fibrosis inremnant kidney through the Nrf2–keap1 pathway, Mol. Nutr. Food Res. 57, 1649–1659.
[48]
Jha, N. S., Mishra, S., Jha, S. K., Surolia, A., 2015. Antioxidant activity and electrochemical elucidation of the enigmatic redox behavior of curcumin and its structurally modified analogues. Electrochim. Acta 151, 574-583.
[49]
Khalil, N. M., do Nascimento, F. C. F., Casa, D. M., Dalmolin, L. F., de Mattos, A. C., Hoss, I., Romano, M. A., Mainardes, R. M., 2013. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloid Surf. B Biointerf. 101, 353-360.
[50]
Naksuriya, O., Okonogi, S., Schiffelers, R. M., Hennink, W. E., 2014. Review Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35, 3365-3383.
[51]
Zhang, Z., Jiang, M., Fang, J., Yang, M., Zhang, S., Yin, Y, et al., 2017. Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood–brain barrier disruption through inhibition of inflammatory response and oxidative stress. Mol. Neurobiol. 54, 1–14. http://dx. doi.org/10.1007/s12035-015-9635-y.
Browse journals by subject