Volume 4, Issue 4, December 2019, Page: 82-86
Electron Microscopic Studies in Escherichia Coli on Mode of Action of Sodium Benzoate and Potassium Sorbate
Norma Angélica Santiesteban-López, Faculty of Administration (Gastronomy). Benemérita Universidad Autónoma de Puebla, University City, Puebla, México
Teresa Gladys Cerón-Carrillo, Faculty of Administration (Gastronomy). Benemérita Universidad Autónoma de Puebla, University City, Puebla, México
José Luis Carmona-Silva, Faculty of Administration (Gastronomy). Benemérita Universidad Autónoma de Puebla, University City, Puebla, México
Javier Castro-Rosas, Academic Area of Chemistry, Institute of Basic Sciences and Engineering, Autonomous University of the State of Hidalgo, Hidalgo, México
Received: Mar. 11, 2019;       Accepted: May 15, 2019;       Published: Oct. 24, 2019
DOI: 10.11648/j.ijfsb.20190404.11      View  32      Downloads  18
Abstract
Traditionally food antimicrobials was utilized to extent the lag phase or inhibit the growth of microorganisms; however, it has been demonstrated that exposure to antimicrobials such as sodium benzoate and potassium sorbate in sublethal concentrations, and gradually increasing the dose, allowed the adaptation of microorganisms of interest in food, such as E. coli, exhibiting induced resistance by unknown mechanisms. Therefore, the objective of this study was to identify the ultrastructural changes in viable cells of E. coli adapted to high concentrations (7000 ppm) of these antimicrobials, using transmission electron microscopy (TEM). After treatment with potassium sorbate, E. coli presented important morphological changes such as the separation of the cell membrane from the cytoplasm and cell wall, the appearance of a remarkable electronic light at the center of cells containing condensed deoxyribonucleic acid (DNA) molecules, as well as the appearance of small dense granules of electrons. Therefores, potassium sorbate induced more severe shape structural changes, presence of unusual structures and loss of integrity compared to viable cells adapted to sodium benzoate.
Keywords
Adaptation, Potassium Sorbate, Sodium Benzoate, E. coli, Morphological Changes
To cite this article
Norma Angélica Santiesteban-López, Teresa Gladys Cerón-Carrillo, José Luis Carmona-Silva, Javier Castro-Rosas, Electron Microscopic Studies in Escherichia Coli on Mode of Action of Sodium Benzoate and Potassium Sorbate, International Journal of Food Science and Biotechnology. Vol. 4, No. 4, 2019, pp. 82-86. doi: 10.11648/j.ijfsb.20190404.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Davidson, P. M. (2001). Chemical preservatives and natural antimicrobial compounds. En M. P. Doyle, L. R. Beuchat, and T. J. Montville (Ed.) Food Microbiology: Fundamentals and Frontiers (pp. 593-627). Washington, D. C.: ASM Press.
[2]
Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (01 de 12 de 2014). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology.
[3]
Poole, K. (2002). Mechanisms of bacterial biocide and antibiotic resistance. Journal of Applied Microbiology, págs. 55-64.
[4]
Gutmann, L., Vincent, S., Billop-Klein, D., Acar, J. F., Mrena, E., & Williamson, R. (1986). Involvement of Penicillin- binding protein 2 with other Penicillin-binding proteins in lysis of Escherichia coli by some β-lactam antibiotic alone and synergistic lytic effect of Amdinocillin (Mecillinam). Antimicrobial Agents Chemotheraphy, 30 (6), 906-913.
[5]
Bower, C. K. & Daeschel, M. A. (1999). Resistance responses of microorganisms in food environments. Intlernational Journal of Food Microbiology, 50, 33-44.
[6]
Feng Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Jurnal of Biomedical Material Research, 52, 662-668.
[7]
Chopra, I., & Roberts, M. (06 de 2001). Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, págs. 232-260.
[8]
Barrett, E., & Asscher, A. W. (1972). Action of ethylenediaminetetraacetic acid (EDTA) on carbenicillin-resistant strains of Pseudomonas aeruginosa. Journal of Medical Microbiology, 5, 355-360.
[9]
Girón, J. A, Ho. A. S, & Schoolnik, G. K. (1993). Characterization of fimbriae produced by enteropathogenic Escherichia coli. Bacteriology, 175 (22), 7391-403.
[10]
Santiesteban – López, N. A., Rosales, M., Palou, E. & López-Malo, A. (2009). Growth response of Escherichia coli ATCC 35218 adapted to several concentrations of sodium benzoate and potasium sorbate. Journal of Food Protection, 72 (11), 2301-2307.
[11]
Dykstra, M. J. (1993). A manual of applied techniques for biological electron microscopy. Plenum Publishing Corporation, Nueva York, EE UU.
[12]
Someya, A., Tanaka, K. & Tanaka, N. (1979). Morphological changes of Escherichia coli induced by Bicyclomycin. Antimicrobial Agents Chemotheraphy, 16 (1), 87-91.
[13]
Russell, A. D. (1995). Mechanisms of bacterial resistance to biocides. International Biodeterioration & Biodegradation, 36, 247–265.
[14]
Beales, N. (2004). Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Comprehensive Reviews of Food Science and Food Safety, 3, 1–20.
[15]
Koike, M., K. Lida, & Matsuo, T. (1969). Electron microscopic studies on mode of action of polymyxin. Journal of Bacteriology, 97, 448-452.
[16]
Andersson, D. I. (2003). Persistence of antibiotic resistant bacteria. ELSEVIER, págs. 452-456.
[17]
Wahn, K., G. Lutsch, T. Rockstroh, & K. Zapf. (1968). Morphological and physiological investigations on the action of polymyxin B on Escherichia coli. Archive fur Mikrobiologie, 63, 103-116.
[18]
Mathur, S., & Singh, R. (20 de 03 de 2005). Antibiotic resistance in food lactic acid bacteria. ELSEVIER, págs. 282-288.
[19]
Cox, A. D. & Wilkinson, S. G. (1991). Ionizing groups in lipopolysaccharides of Pseudomonas cepacia in relation to antibiotic resistance. Molecular Microbiology, 5, 641-646.
[20]
Boman, H. G., Jonsson, S., Monner, D., Normark, S. & Bloom, G. D. (1971). Cell-surface alterations in Escherichia coli K-12 with chromosomal mutations changing ampicillin resistance. Annals of New York Academy of Science, 182, 342-357.
[21]
Fair, R. J., & Tor, Y. (24 de 06 de 2014). Antibiotics and Bacterial Resistance in the 21st Century. Libertas Academica, págs. 25-64.
[22]
Tanaka, M. K., Ishihara, K., Morioka, A., Kojima, A. Ohzono, T. Ogikubo, K., Takahashi, T. & Tamura, Y. (2003). A national surveillance of antimicrobial resistance in Escherichia coli isolated from food-producing animals in Japan. Journal of Antimicrobial Chemotheraphy, 51, 447-451.
[23]
Sondi, I. S. (2004). Las nanoparticulas de plata como agente antimicrobiano: un estudio de caso en un modelo para las bacteritivasas Gram-Nega. Diario del coloide y la interfaz de ciencia, 177-182.
[24]
Uri, J. V. & Actor, P. (1985). Enoxin: A potent inducer of filamentous Escherichia coli cells. Acta Microbiologica Hungarica, 32 (2), 197-200.
[25]
Lilian Pumbwe, Christopher A Skilbeck, Viviane Nakano, Mario J. Avilas Campos, Roxane MF Piazza, Hannah M Wexler. (2007). Las sales biliares mejoran bacteriana co-agregación, epitelial bacteriana-intestinal la adhesion celular, la formación de Película bio y resistencia a los antimicrobianos de Bacteroides fragilis. ELSEVIER, 78-87.
[26]
Baquero, F., Martínez, J. L., & Cantón, R. (04 de 06 de 2008). Antibiotics and antibiotic resistance in water environments. ELSEVIER, págs. 260-265.
[27]
Martinez, J. L. (25 de 05 de 2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. ELSEVIER, págs. 2893-2902.
[28]
Caitlin C Otto, Tanya M Cunningham, Michael R Hansen and Shelley E Haydel. (2010). Effects of antibacterial mineral leachates on the cellular ultrastructure, morphology, and membrane integrity of Escherichia coli and methicillin-resistant Staphylococcus aureus. Annals of Clinical Microbiology and Antimicrobials, 1-13.
Browse journals by subject